
RL-TR-94-76
In-House Report
June 1994 AD-A28 5 208

WAVES VHDL INTERFACE

James P. Hanna

APPROVEO FOR PURL C RELFSES D/STIU TON UN IMITED.

. *.

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

94-313329 4 " ' il/i/l/l/t/l//l/lllil

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-94-76 has been reviewed and is approved for publication.

APPROVED: &E#LC. OAJ4047

EUGENE C. BLACKBURN
Chief, Electronics Reliability Division
Electromagnetics & Reliability Directorate

FOR THE COMMANDER:

JOHN J. BART
Reliability Sciences
Electromagnetics & Reliability Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,
please notify RL (ERDD) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Form ApprovedREPORT DOCUMENTATION PAGE 0MB No. 0704-01 88
PI.A:A crpa~tk fb tifort I c d a"aow jimmk tomwepi hms Ip rp ts•isnp k'kA*V tuwl for rov*s .ruc m s.acN • • d
g,3&Ww1Qi d L W L t he IU d rumc , r ad cwvjp g va &-d lvmAr*4g h bcolkm ka ot k4-oW S" Gon $ m s regwck ti-,s bIqder e e r aye o " dxeat t 3SM e t Ii
rcoctid lia-Wo V=ki* siggmab" for rred *q b1. t to Wad*-gtcn Hee•t•. s Swvlow OkolcltxOd for "-minan Oposu-ns a•d Repons, 1 2It. ,efirfu
0" HmW, M 1204. ASkiUI VA -43OZ an to " Offi Mw•g•gww and rudgi Pwwak Redon Prqd (0704-01 8M. Wastton DC 20503

1. AGENCY USE ONLY (eave Blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVEREDJune 1994
In-House

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
WAVES VHDL INTERFACE PE - 62702F

PR - 2338

6. AUTHOR(S) TA - 01
WU - 7U

James P. Hanna

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Rome Laboratory (ERDD) REPORT NUMBER

525 Brooks Road
Criffiss APB NY 13441-4505

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(E$) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Rome Laboratory (ERDD)
525 Brooks Road RL-TR-94-76
Griffiss AFB NY 13441-4505

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: James P. flanna/ERDD/(315) 330-2241

12a. DISTRIBUTION/AVAIABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT(ma' - 200

The Waveform and Vector Exchange Specification (WAVES) is the Industry standard
representation for digital stimulus and response for both the design and test
communities. The VHSIC Hardware Description Language (VHDL) is the Industry standard
language for the design, modeling, and simulation of digital electronics. Together
VHDL and WAVES provide powerful support for top-down design and test methodologies and
concurrent engineering practices. Although the syntax of WAVES is a subset of VHDL, no
special support for using WAVES in a VHDL environment is defined within the language.
This report will introduce and describe a VHDL package that was developed at Rome
Laboratory to provide a software interface to support the use of WAVES in a VHDL
environment. This VHDL package is referred to as the WAVES VHDL interface and has been
proposed as a standard practice for a top-down design and test methodology using WAVES
and VHDL. This report is not intended to provide a tutorial on VHDL or WAVES. It is
assumed that the reader has an adequate understanding of the VHDL language and some
modeling techniques. Further, it is assumed that the reader has an understanding of the
WAVES language and can follow a simple Level 1 dataset description.

14. SUBJECT TERMS iI NUMBER OF PAGES
VHDL, VHSIC, Design, Test, Top Down Design, Design Verification, 6 d PRICE CODE
WAVES, Concurrent Engineering

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 119. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPOFuC OF THIS PAGE OF ABSTRACTUNCLASSIFIED UNCLASSIFIED UNCLASSIFIED U

NSN 75401 21-0-ý StaNIOWC :omtop (P•v P e
Psstrwbec• Oy ANWA tc Z29, a

". - 290-102

Accesion For
NTIS CRA&I

DTIC TAR
Una noi riced I-
Justifiication

.......................

Table Of Contents By
Distribution 1

Availability Coues

Dist fAvail a:'d /orSpec~ial

A bstract .. .
Introduction .. 1
O bjective ... 3
The W AV ES-V H D L Interface .. 4

The Sim ulatorC odes Package ... 5

C ontext C lauses .. 7

Type Declarations ... 7

C onstant D eclarations .. 8
The W AVES_VH D LInterface Package .. 8

C ontext C lauses .. 13

Type Declarations ... 14

Functions ... 14

P rocedures .. 17

Testbench Exam ple ... 19

C ontext C lauses .. 24

Entity Declaration ... 25

Architecture Body ... 25

C onclusions ... 26
A ppendix A : W V I Package Body ... Al

Appendix B: Four Bit A LU V H D L M odel .. B1

Appendix C : The W AVES Dataset .. C 1

R eferences & Bibliography ... R 1

-- S lI/ iIUI I ~II

WAVES VHDL Interface

Abstract

The Waveform and Vector Exchange Specification (WAVES)[11 is the Industry

standard representation for digital stimulus and response for both the design
and test communities. The VHSIC Hardware Description Language
(VHDL)[21 is the Industry standard language for the design, modeling, and
simulation of digital electronics. Together VHDL and WAVES provide
powerful support for top-down design and test methodologies and concurrent
engineering practices. Although the syntax of WAVES is a subset of VHDL,
no special support for using WAVES in a VHDL environment is defined
within the language. This report will introduce and describe a VHDL package
that was developed at Rome Laboratory to provide a software interface to
support the use of WAVES in a VHDL environment. This VHDL package is

referred to as the WAVES VHDL Interface and has been proposed as a
standard practice for a top-down design and test methodology using WAVES
and VHDL. This report is not intended to provide a tutorial on VHDL or
WAVES. It is assumed that the reader has an adequate understanding of the
VHDL language and some modeling techniques. Further, it is assumed that
the reader has an understanding of the WAVES language and can follow a

simple Level 1 dataset description.

Introduction

In December of 1991, the Waveform and Vector Exchange Specification

(WAVES) was approved by the broad balloting community of the Institute of
Electrical and Electronics Engineers (IEEE) as the Industry standard
representation and exchange format for digital stimulus and response data.
The standard (IEEE Std 1029.1-1991) was developed to address the needs of

both design and test activities. WAVES was developed by the WAVES
Analysis and Standardization Group (WASG). The WASG was jointly
sponsored by the Automatic Test Program Generation (ATPG) subcommittee
of the Standards Coordination Committee 20 (SCC20) and the Design
Automation Standards Subcommittee (DASS) of the Computer Society.

Page 1

WAVES VHDL Interface

The development of WAVES was funded by the Rome Laboratory

Microelectronics Reliability Division as one of the extensions to the Tester
Independent Support Software System (TISSS). WAVES was one of the data

formats used to demonstrate the capability of automatically generating

Automated Test Equipment (ATE) test programs for complex digital Line

Replaceable Modules (LRMs) for the Demonstration and Validation
(DEMVAL) phase of the Air Force's Advanced Tactical Fighter (ATF)

program.

The WAVES standard provides a powerful support mechanism for concurrent

engineering practices by allowing digital stimulus and response information
to be freely exchanged between multiple simulation and test platforms.

WAVES is defined as a syntactic subset of VHDL. However, no "hooks" or
interface provisions that are unique to VHDL were designed into the WAVES

language to facilitate its use in a VHDL modeling environment. Providing a

seamless interface between WAVES datasets and VHDL models (or any

specific application) is beyond the scope of developing an interchange format.

However, this very lack of interface "hooks" requires the developer of WAVES
testbenches for the VHDL environment to have detailed knowledge of the
implementation of the WAVES construct known as the WAVES port list.

The interface to the WAVES dataset is through the WAVES port list. The

WAVES port list provides the signals that are used to drive the model and

signals that describe the expected response of the model. These signals are
provided in terms of the WAVES concept of a "logic value." The logic value is

described as an event on a given signal in terms of state, strength, direction,
and relevance. All of this event information may not be applicable to the
VHDL model, some may only have meaning in the context of physical

hardware. When WAVES is used in a VHDL modeling environment, the
WAVES logic values must be translated into the simulator codes that can be

used by the model. No mechanism for achieving this translation is provided
by the WAVES language definition since this is a VHDL-specific

implementation issue.

The WAVES Language Reference Manual (LRM) does not define the data

structure implementation of the WAVES port list. The reason for this is that

Page 2

WAVES VHDL Interface

particular environments (various testers, various simulators, etc.) may place
different constraints and requirements on the underlying implementation of
the WAVES port list. The WAVES standard is not dependent on any
particular environment or usage scenario. This provides for maximum
flexibility when interfacing WAVES to various applications and
environments. Flexibility does not come without a price. This poses concern
when using WAVES in a VHDL modeling environment since different VHDL
simulators are free to implement the WAVES port list in very different ways.
Developing WAVES testbenches for VHDL models, then, is not as straight-
forward as one might assume. Using WAVES in the VHDL environment is
not "plug-and-play."

Objective

The objective of this technical report is to describe and document the work
that was done to provide the VHDL community with a user-friendly, seamless
interface to WAVES. This work was done in response to several negative
comments received during the balloting activities of the WAVES
standardization effort. These comments addressed a lack of flexibility in the

structure and use of the WAVES port list.

One of the comment ballots returned was concerned that WAVES forces the
user to deal with waveforms as a "...flat list of scalar connections..." and that
this is "...unreasonable... [for] modern chips and boards with hundreds of
scalar connections." This comment further stated that, "It should be easier to
identify the connections used in groups and address their waveforms on this
basis." Another comment ballot was concerned that, "An undesirable
limitation.. .is... that [WAVES] allows no functional vectors (such as bussed

vectors)."

An additional concern was raised during the WASG meeting in which the
ballot comments were addressed and responses prepared. The concern was
that since the WAVES standard allows flexibility in the implementation of

Page 3

WAVES VHDL Interface

the WAVES port list that WAVES testbenches would not be portable across

multiple implementations.

The WAVES-VHDL Interface (WVI), described in this report, was developed

to address these concerns and to serve as a set of "standard practices" for
using WAVES in a VHDL modeling environment. The remainder of this

technical report discusses these issues. This report presents the Interface

packages, describes their functionality, and provides an example of their use
in a fully portable VHDL test bench. A "full blown" VHDL 4-bit ALU
example, the associated WAVES dataset, and an implementation of the
interface package body are included as appendices to this document.

The WAVES-VHDL Interface

The WAVES-VHDL Interface (WVI) was developed to define and provide a

software interface to ease the use of WAVES in the VHDL environment. In

particular, the WVI addresses two areas of concern: connecting the WAVES

port list signals to the VHDL model and test bench portability. If WAVES
testbenches are to be portable among a variety of VHDL simulators, without
regard to a particular implementatifn of the WAVES standard, some
"standard practice" interface to the WAVES port list must be defined. The

WVI provides a nomenclature and a set of calling conventions for an
implementation independent functional interface to the WAVES port list.

These functional interfaces also provide the mechanisms needed to support
the WAVES port list to VHDL model port connections in a flexible and easy

to use manner. The functions and procedures included in the WVI package

provide support for comparing the actual response of the VHDL model with
the expected response given in the WAVES dataset.

The W'VI uses the VHDL packaging concepts to separate the functional
interface from the implementation details. The WVI package specification

serves as the "standard practice" that defines these interfaces and their

calling conventions. The WVI package body defines the semantics behind the
interfaces and provides one possible implementation of these semantics

Page 4

WAVES VHDL Interface

based on the VHDL packages that implement the WAVES standard. The

package body, listed in Appendix A, is only one possible implementation that
demonstrates these semantics. This approach allows testbenches written

based on the WVI to be portable among multiple WAVES-VHDL
environments since they rely only on the WVI package specification and not on

the implementation hidden in the package body. VHDL environments with
differing WAVES implementations will need to provide a WVI package body

based on the local WAVES implementation. Since the implementation of the

WVI package body is only depender.t on the implementation of the WAVES
port list, modifying these functions and procedures is a relatively trivial task.

The WVI also provides the needed WAVES logic value to VHDL simulator

code translation mechanisms. The WVI "uses" a user supplied VHDL

package that defines the mappings between the WAVES logic values and the
simulator codes that the VHDL model expects and generates. This user

supplied package allows the WVI to support VHDL models with arbitrary

signal types.

The Simulhtor Codes Package

A user supplied package that must be named "SimulatorCodes" is required
in order to use the WVI package. This package defines the explicit mappings

between the simulator codes that the VHDL model expects and the logic

values that the WAVES dataset provides. This is the only code that the user

of the WVI must supply in order to use the WAVESVHDLInterface

package, presented later.

This package consists only of subtype declarations, type declarations, and

constant declarations. The types declared within this package are used only
in the definition of the constants that this package declares. Listing 1

provides an example of a SimulatorCodes package that maps the simulation
codes from IEEE STD 1164 STD-ulogic type to the WAVES example dataset
that is described later in this report.

Page 5

WAVES VHDL Interface

Listing 1: The SimulatorCodes Package.

use WORK.STDLogic_1164.a1l;

use WORK.MM54HC181 _WAVES_logic.all;

package SimulatorCodes is

-- Declare Simcode.

subtype Simcode is Std-ulogic;

-- Declare Simcodevector.

subtype Simcodevector is Stdulogic-vector;

-- Declare Simcode array.

type Simcodearray is array (Logic-value'left to Logic-value'right)

of Simcode;

-- Declare Booleanmatrix.

type Booleanmatrix is array (Simcode'left to Sim-code'right,

Logic.value'left to Logic-value'right)

of Boolean;

-- Define TRANSLATE table.

-- LV_UNKNOWN DONTCARE DRIVE_0 DRIVE_1 SENSE_0 SENSE 1

Constant TRANSLATE : Simcode-array := ('U','-', '0', '1', '0', '1');

-- Define ISEQUAL table.

constant ISEQUAL: Booleanmatrix:=

Page 6

WAVES VHDL Interface

-- LVUNKNOWN DONTCARE DRIVE_0 DRIVE_1 SENSE_0 SENSE_1

((TRUE, TRUE, FALSE, FALSE, FALSE, FALSE), -- 'U'

(TRUE, TRdE, FALSE, FALSE, FALSE, FALSE), -- X

(FALSE, TRUE, TRUE, FALSE, TRUE, FALSE), -- '0'

(FALSE, TRUE, FALSE, TRUE, FALSE, TRUE), -- '1'

(FALSE, TRUE, FALSE, FALSE, FALSE, FALSE), --

(TRUE, TRUE, FALSE, FALSE, FALSE, FALSE), -- W'

(FALSE, TRUE, TRUE, FALSE, TRUE, FALSE), -- 'L'

(FALSE, TRUE, FALSE, TRUE, FALSE, TRUE), -- 'H'

(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE)); --

end SimulatorCodes;

Context Clauses

The "use WORK.STDLogicj 164.all" clause in Listing 1 provides visibility to

all of the types and functionality of the 1164 standard packages.

The "use WORK.MM54HC181 WAVESlogic.all" in Listing 1 provides

visibility to the required, user-defined WAVES type Logic-value.

Type Declarations

Two subtypes and two constants are exported by this package and used by the

WVI package. The subtypes must be named "Simcode" and

"Simcodevector." The subtype "Simcode", in this example, essentially

renames the IEEE STD 1164 STDulogic type for use with the

WAVESVHDLInterface package. Likewise, the subtype "Simcodevector",

in this example, renames the IEEE STD 1164 STDulogic type for use with

the WAVESVHDLInterface package.

The two types, "Simcodearray" and "Booleanmatrix", serve only to provide

the data structures necessary to implement the two constant look-up tables

Page 7

WAVES VHDL Interface

"TRANSLATE" and "IS-EQUAL" respectively. The name of these two types
is irrelevant since they are not used anywhere else.

Constant Declarations

Two constants are used to implement look-up tables. These constants must

be named "TRANSLATE" and "ISEQUAL." The constant "TRANSLATE,"

as its name implies, is used by the WAVESVHDLInterface package to

translate WAVES logic values into the appropriate simulator codes for use
with the VHDL model. This look-up table is indexed by the WAVES type

Logic-value and must correspond exactly in order and dimension with the

WAVES Logic-value declaration. The semantics of the "TRANSLATE" table

are as follows: given a WAVES Logic-value, TRANSLATE returns the

corresponding SimCode.

The constant "ISEQUAL" is used by the WAVESVHDLInterface package

to determine the equivalence of a WAVES Logic value and a Simcode. The
semantics of the "IS-EQUAL" table are as follows: giveh1 a Simcode and a
WAVES Logic-value, ISEQUAL returns TRUE if, and only if, the Simcode

and Logicvalue are logically equivalent. In this example the WAVES
Logic-value 'SENSE_0' and the IEEE STD Ulogic value '-' are defined as

logically equivalent since the corresponding table entry is the Boolean 'TRUE'.

The WAVES VHDL Interface Package

As stated previously, the WAVES VHDL Interface package provides a

nomenclature and a set of calling conventions for an implementation

independent functional interface to the WAVES port list. This package

consists of one type declaration, eight function deciarations, and seven
procedure declarations. In this section each of these functional interfaces will

be described. Listing 2 lists the WVI package specification in its entirety.

Page 8

WAVES VHDL Interface

Listing 2: The WAVESVHDLInterface Package Specification.

use WORK.MM54HC181_WAVES_DUT.alI;

use WORK.MM54HC181_WAVESLogic.alI;
use WORK.SimulatorCodes.all;

use WORK.WAVES-Objects.all;

package WAVESVHDLInterface is

-- Type declarations.

-- Declare a type for vectors of user defined type 'Logic-value'.

type Logicvector is array (natural range <>) of Logic-value;

-- Function and procedure declarations.

-- This function returns the Simcode that corresponds to the WAVES
-- Logic-value of the given pin in the waves port list.

function simcodeOf(signal WPL WAVESportjlist;

PIN :Testpins)
return Sim_code;

-- This function returns a Simcodevector that corresponds - in length

-- and order - to the WAVES Logic values in the WAVES port list elements
-- that are members of the given pin set.

function simcodeVectorOf(signal WPL WAVES-portlist;

PINSET Pinset:= ALLPINS;

Page 9

WAVES VHDL Interface

ASCENDING: Boolean := TRUE)
return Simcode vector;

-- This function returns the WAVES Logic-value of the given pin in
-- the waves port list.

function LogicValue Of(signal WPL• WAVESport_list;

PIN : Test-Pins)
return Logic-value;

-- This function returns a Logic-vector that corresponds - in length

-- and order - to WAVES logic values in the WAVES port list elements
-- that are members of the given pin set.

function LogicVectorOf(signal WPL WAVES-portjist;

PINSET • Pinset:= ALLPINS;

ASCENDING: Boolean := TRUE)

return Logic-vector;

-- This function compares a Simcode to the corresponding element

-- (given by PIN) of the WAVES port list.

function Compare(signal WPL WAVESportjlist;

CODE: Sim_code;
PIN • Test-pins)

return Boolean;

-- This function compares the Simcodes in the Sim codevector to the

corresponding elements (given by PIN-SET) of the WAVES port list.

function Compare(signal WPL • WAVES&portjlist;
VECTOR : Simcodevector;

Page 10

WAVES VHDL Interface

PINSET: Pinset:= ALLPINS)

return Boolean;

-- This function compares a Simcode to an element (given by PIN) of

-- the WAVES port list and returns a WAVES_matchlist indicating the result.

function Compare(signal WPL • WAVES-portjlist;

CODE: Sim code;

PIN : Test-pins)

return WAVESmatch-list;

-- This function compares each Simcode in the Simcodevector to the

-- corresponding elements (given by PINSET) of the given WAVES port
-- list and returns a WAVESmatch_list indicating the results.

function Compare(signal WPL • WAVESportjlist;

VECTOR : Sim_codevector;
PINSET: Pinset := ALLPINS)

return WAVESmatch-list;

-- This procedure assigns the element (given by PIN) of the WAVES
-- match list to the values specified in the WAVES_match_list that are

-- given by PIN.

procedure MatchAssign(signal WML : inout WAVESmatchjlist;

VALUE: in WAVESmatchlist;
PIN • in TestPins);

-- This procedure assigns all of the elements (given by PINSET) of
-- the WAVES match list to the values specified in the WAVESmatchlist

-- that are members of PINSET.

Page 11

WAVES VHDL Interface

procedure MatchAssign(signal WML inout WAVESmatchlist;

VALUE : in WAVESmatchlist;

PINSET: in Pinset :ALLPINS);

-- This procedure compares a Simcode to an element (given by PIN) of

-- the WAVES port list and assigns the corresponding element of the

-- WAVES match list to the result.

procedure Compare(signal WPL • inout WAVESportlist;
signal WML • inout WAVESmatch_list;

CODE: in Simcode;

PIN • in Test-pins);

-- This procedure compares each Simcode in the Simvector to the

-- elements (given by PIN-SET) of the WAVES port list and assigns

-- the corresponding elements of the WAVES match list to the results.

procedure Compare(signal WPL : inout WAVES-port-list;
signal WML • inout WAVESmatchlist;

VECTOR "in Simcodevector;

PINSET: in Pinset := ALLPINS);

-- This procedure returns the tag string associated with the given

-- pin from the WAVES port list.

procedure GetTag(signal WPL: inout WAVESportList;

TAG: out String;

PIN : in Test-pins);

-- This procedure returns the tag string associated with the given

-- pin set from the WAVES port list.

Page 12

WAVES VHDL Interface

procedure GetTag(signal WPL • inout WAVES-portList;
TAG • out String;

PINSET: in Pinset:= ALLPINS);

-- This procedure returns the tag string associated with the current
-- WAVES port list.

procedure GetTag(signal WPL: inout WAVES_port_List;
TAG • out String);

end WAVESVHDLInterface;

Context Clauses

The "use WORK.MM54HC181_WAVESDUT.all" clause in Listing 2 is
required to provide visibility to the user defined WAVES required "Test-pins"
type declaration. This type declaration is used by the WAVES VHDL
Interface package functions and procedures to allow the user to select signals
from the WAVES port list by pin name.

The "use WORK.MM54HC181_WAVES_Logic.all" clause in Listing 2 is
required to provide visibility to the user defined WAVES required Logicvalue
type declaration. This type declaration is used by the WAVES VHDL
Interface package to allow the translation of logic values to Simulator codes
and for function return types.

The "use WORK.SimulatorCodes.all" clause is required to provide visibility
to the types and translation tables declared in the Simulator-Codes package.
The types are Simcode and Simcode vector and are used as function return
types. The translation tables are TRANSLATE and IS-EQUAL and are used
to compute Logicvalue to Simcode translations and Logic-value to
Sim-_code logical equivalence respectively.

Page 13

WAVES VHDL Interface

Finally, the "use WORK.WAVESObjects.all" clause is required to provide
visibility to the WAVES built-in types Pinset, WAVES-portlist, and
WAVES_matchlist. The type Pinset is used to allow the user to select

signals from the WAVES port list by pinset (logical pin groupings). The type
WAVES-port list is the data structure from which individual signals and
groups of signals are selected for use by the VHDL model. The
WAVESmatchlist type is used as function and procedure return type.

Type Declarations

The type declaration, Logic..vector is used as the return type for the
Logic._Vector_Of function. This function is discussed below.

Functions

The function SimCodeOf accepts two parameters: WPL - of type
WAVES-port list and PIN - of type Test-pins, and returns an object of type
Sim-code. The value returned is the simulator code (defined by the
translation table TRANSLATE in the SimulatorCodes package) that
corresponds to the logic value located in the PINth element of the WAVES
port list object WPL. This function is used to select the Simcode of a single
signal from the WAVES port list. The result of a call to this function may be
applied to an input port of a VHDL model and used to stimulate the model
during simulation.

The function SimCodeVectorOf accepts three parameters: WPL - of type
WAVESport list, PINSET - of type Pinset, and ASCENDING - of type

Boolean, and returns an object of type Simcode vector. The value returned is
the vector of simulator codes that correspond to the logic values located in the
WAVES port list object WPL and indexed by the elements of the Pinset object
PINSET. Both the PINSET and the ASCENDING parameters have default
values. The default value of the PINSET parameter is the set ALLPINS, as
defined in the WAVES standard package WAVESObjects. The default value
of the ASCENDING parameter is the Boolean TRUE. The semantics of the
function are as follows: for each element in PINSET select the single
corresponding logic value from the WAVES port list, then translate (as

Page 14

WAVES VHDL Interface

defined by the translation table TRANSLATE in the SimulatorCodes

package) the selected logic value into a simulator code and place it in the ith

element of the returned vector. The base type of the range of the returned

vector is Natural (bounded by 0), and, is in ascending order when the Boolean

value of the ASCENDING parameter is TRUE. This function is used to select

a vector of Simrcode elements (eg. a bus) with either ascending or descending

range from the WAVES port list. The result of a call to this function may be

applied to an input port (or ports) of a VHDL model and used to stimulate the

model during simulation.

The function LogicValueOf accepts two parameters: WPL - of type

WAVES-portlist and PIN - of type Testpins, and returns an, object of type

Logic-value. The value returned is the Logic-value located in the PINth

element of the WAVES port list object WPL. This function is used to select

the Logicvalue of a single signal from the WAVES port list.

The function LogicVectorOf accepts three parameters: WPL - of type

WAVESportjlist, PINSET - of type Pinset, and ASCENDING - of type.

Boolean, and returns an object of type Logic_vector. The value returned is the

vector of logic values located in the WAVES port list object WPL and indexed

by the elements of the Pinset object PINSET. Both the PINSET and the

ASCENDING parameters have default values. The default value of the

PINSET parameter is the set ALLPINS, as defined in the WAVES

standard package WAVES-Objects. The default value of the ASCENDING

parameter is the Boolean TRUE. The semantics of the function are as

follows: for each element in PINSET select the single corresponding logic

value from the WAVES port list and place it in the ith element of the

returned vector. The base type of the range of the returned vector is Natural

(bounded by 0), and, is in ascending order when the Boolean value of the

ASCENDING parameter is TRUE. This function is used to select a vector of

Logicqvalue elements (e.g. a bus) with either ascending or descending range

from the WAVES port list.

There are four overloaded compare functions grouped into two variants based

on their return types. One variant of the compare function returns a Boolean

value while the other returns a WAVES-matchlist value. The first variant

Page 15

WAVES VHDL Interface

is used to compare simulator codes that are generated by a VHDL model to

the expected, or predicted, response specified by the WAVES dataset. The

second variant accomplished the same comparison but instead of returning a
Boolean value, this comparison is used to generate a WAVES match list

object that can be passed to the waveform generator procedure to take

advantage of the match capability of WAVES. Each of the comrare functions

are discussed below.

The first Compare function (first variant) accepts three parameters: WPL - of

type WAVESport list, CODE - of type Sim ecode, and PIN - of type Test_pins,

and returns an object of type Boolean. The semantics of this function are as

follows: select the logic value located in the WAVES port list parameter WPL
at the PINth location, and compare it to the simulator code parameter CODE

(based on the look-up table IS-EQUAL in the SimulatorCodes package) then
return the Boolean value that results from the table look-up. This function is

used to compare a single simulator code with a single signal in the WAVES

port list. The result of a call to this function may be used to monitor the
behavior of output ports of a VHDL model during simulation.

The next Compare function (first variant) accepts three parameters: WPL - of

type WAVES-port list, VECTOR - of type Sim-code._vector, and PINSET - of

type Pinset, and returns an object of type Boolean. The default value of the
PINSET parameter is the set ALLPINS, as defined in the WAVES

standard package WAVES-Objects. The semantics of this function are as

follows: for each element in PINSET select the single corresponding logic
value located in the WAVES port list parameter WPL and compare it to the

ith element of the Simcodevector parameter VECTOR (based on the look-

up table ISEQUAL in the SimulatorCodes package). The return value of

the function is the logical and of all of the individual comparisons. This

function is used to compare a vector of simulator codes (e.g. a bus) with a
vector of logic value signals in the WAVES port list. The result of a call to

this function may be used to monitor the behavior of output ports of a VHDL

model during simulation.

The next Compare function (second variant) accepts three parameters: WPL -

of type WAVES-portjlist, CODE - of type Sim-code, and PIN - of type

Page 16

WAVES VHDL Interface

Test__pins, and returns an object of type WAVESmatchlist. The sernmantics
of this function are as follows: examine the match control flag for the PINth
element of the WAVES port list parameter WPL. If the value of the match
control flag is "SAMPLE," select the logic value located in the WAVES port
list parameter WPL at the PINth location, and compare it to the simulator
code parameter CODE (based on the look-up table ISEQUAL in the
SimulatorCodes package). Then store the result of this comparison in the

match result register of the PINth element of the resulting
WAVES_matchlist. This function is used to compare a single simulator code
with a single Logicvalue signal in the WAVES port list and generate a
WAVESmatchlist that represents this comparison.

The last Compare function (second variant) accepts three parameters: WPL -

of type WAVESportlist, VECTOR - of type Simcode vector, and PINSET -
of type Pinset, and returns an object of type WAVESmatchlist. The default
value of the PINSET parameter is the set ALL_PINS, as defined in the
WAVES standard package WAVESObjects. The semantics of this function

are the same as the other function of this variant except that instead of
generating a WAVES match list with only a single pin comparison
represented, this function generates a WAVES match list that represents the
comparisons for multiple pins, all of the elements in the PINSET parameter.
This function is used to compare a vector of simulator codes (e.g. a bus) with a
vector of Logic-value signals in the WAVES port list and generate a
WAVESmatchlist that represents this comparison.

Procedures

The first of two overloaded MatchAssign procedures accepts three

parameters: WML - of type WAVES_matchlist, VALUE - of type

WAVESmatchlist, and PIN - of type Testpins. The result of calling this
procedure is to assign the PINth element of the WAVES match list

parameter WML, the value stored in the PINth element of the WAVES
match list parameter, VALUE.

The second overloaded Math_Assign procedure accepts three parameters:

WML - of type WAVES_match list, VALUE - of type WAVESmatch-list,

Page 17

WAVES VHDL Interface

and PINSET - of type Pinset. The default value of the PINSET parameter is

the set ALI _PINS, as defined in the WAVES standard package

WAVES_Objects. The result of calling this procedure is to assign the

elements of the WAVES match list parameter WML, the value stored in the

elements of the WAVES match list parameter, VALUE that are selected by

each pin in PINSET.

The first of two overloaded Compare procedures accepts four parameters:

WPL - of type WAVESport list, WML - of type WAVESmatchlist, CODE -

of type Sim-code, and PIN - of type Test pins. The result of calling this

procedure is equivalent to calling the single pin version of the Compare

function (second variant) and passing the resulting WAVES match list to the

single pin version of the MatchAssign procedure. This procedure performs

all of the functions of these two subprograms.

The second overloaded Compare procedure accepts four parameters: WPL - of

type WAVES-portlist, WML - of type WAVES matchlist, VECTOR - of

type Simscodevector, and PINSET - of type Pinset. The default value of the
PINSET parameter is the set ALL_PINS, as defined in the WAVES

standard package WAVES-Objects. The result of calling this procedure is

equivalent to calling the vector version of the Compare function (second
variant) and passing the resulting WAVES match list to the vector version of

the Match-Assign procedure. This procedure performs all of the function of
these two subprograms.

The final three procedures in the WAVES_VHDLInterface package are
overloaded GetTag procedures. The purpose of these procedures is to extract

the tag strings that may have been assigned to the waveform.

The first GetTag procedure accepts three parameters: WPL - of type

WAVES_portlist, TAG - of type String, and PIN - of type Test-pins. The

result of calling this procedure is to assign the TAG parameter the value of
the tag string associated with the PINth element of the WAVES port list

parameter WPL.

Page 18

WAVES VHDL Interface

The next Get-Tag procedure accepts three parameters: WPL - of type

WAVESport_list, TAG - of type String, and PINSET. The default value of

the PINSET parameter is the set ALLPINS, as defined in the WAVES

standard package WAVESObjects. The result of calling this procedure is to

assign the TAG parameter the value of the tag string associated with each

element of the WAVES port list parameter WPL that is selected by the

elements in PINSET.

The last Get-Tag procedure accepts two parameters: WPL - of type

WAVES-portjlist, and TAG - of type String. The result of calling this

procedure is to assign the TAG parameter the value of the tag string

associated with the entire slice of the waveform represented by the WAVES

port list parameter WPL.

Testbench Example

Listing 3 lists the code for an example test bench that illustrates some of the

functionality of the WAVES VHDL Interface package. This example

demonstrates the use of the SimCodeOf, SimCodeVectorOf, and the

Compare functions. This example test bench verifies the functionality of a

VHDL model of a four bit ALU using a WAVES Level 1 dataset. The source

code of the four bit ALU model (including brief descriptive text) is given in

Appendix B. The source code of the WAVES Level 1 dataset (including brief

descriptive text) is listed in Appendix C. The test bench example is described

below.

Listing 3: The VHDL Testbench Example.

-- This design unit provides a functional test bench for verifying the

-- 181 ALU using a WAVES dataset.

Page 19

WAVES VHDL Interface

library IEEE;

use IEEE.STDLogic_1164.all;

use WORK.MM54HC 181 _WAVESDUT.all;

use WORK.WAVESObjects.all;
use WORK.WAVES_VHDLInterface.all;

use WORK.WaveformGenerator.all;

use WORK.MM54HC181_CMOSPERFORMANCECHARACTERISTICS.all;

entity TestBench is

generic (TESTVOLTAGE : natural:= 1;
TESTTEMPERATURE: natural:= 0);

end Test_Bench;

architecture ALU of TestBench is

-- Define signals to connect the WAVES port list signals to the DUT inputs.

signal APINS std-ulogicqvector(3 downto 0);

signal BPINS std-ulogicqvector(3 downto 0);
signal SPINS std-ulogicyvector(3 downto 0);
signal CARRY : std-ulogic;

signal MODE : std-ulogic;

-- Define a signal to receive the F pin outputs from the DUT.

signal FUNCTIONOUTPUTS : Std-ulogic-vector(0 to 3);

-- Define a signal to receive the AEQB pin outputs from the DUT.

Page 20

WAVES VHDL Interface

signal AEQUAL_B: Stdulogic;

-- Define a signal to receive the CN_4 pin outputs from the DUT.

signal CN4: Stdulogic;

-- Define a signal to receive the NOTG pin outputs from the DUT.

signal NOT_G: Std-ulogic;

Define a signal to receive the NOTP pin outputs from the DUT.

signal NOT_P: Std-ulogic;

-- Define a signal to receive each slice of the WAVES dataset

signal CONNECT: WAVESportjlist;

-- The DUT Component Declaration.

component FOURBITALU

generic (VOLTAGE : Volts;

OPERATINGTEMPERATURE : Temperature);

port (AINPUTS, B_INPUTS, SELECTLINES: in Std-ulogicvector;

Cn, M: in Std-ulogic;
F_OUTPUTS : out Std_ulogicqvector;

AEQB, CN_4, NOTG, NOTP : out Std-ulogic);

end component;

Page 21

WAVES VHDL Interface

-- Configure the DUT.

for ALU• FOURBITALU use entity WORK.MM54HC181(BEHAVIORAL);

begin

-- Process to generate the waveform.

WAVES: Waveform(CONNECT);

XTRACT: process(CONNECT)

begin

APINS <= SimCodeVectorOf(CONNECT, APINS);

BPINS <= SimCodeVectorOf(CONNECT, BPINS);

SPINS <= SimCodeVectorOf(CONNECT, SPINS);

CARRY <= SimCodeOf(CONNECT, CN);

MODE <= SimCodeOf(CONNECT, M);

end process;

-- Connect the DUT model.

ALU: FOURBITALU

generic map (VOLTAGE =>
Volts'val(TESTVOLTAGE),

OPERATINGTEMPERATURE =ý-
Temperature'val(TESTTEMPERATURE))

port map (AINPUTS => APINS,

B_INPUTS => BPINS,

SELECTLINES => SPINS,

CN =>CARRY,

M => MODE,

F_OUTPUTS => FUNCTION_OUTPUTS,

Page 22

WAVES VHDL Interface

AEQB => AEQUALB,

NOTP => NOT_P,

CN_4 => CN4,

NOTG => NOTG);

MONITORFUNCTIONOUTPUTS:

process(CONNECT, FUNCTIONOUTPUTS)

begin

assert (Compare(CONNECT, FUNCTIONOUTPUTS, FPINS))
report "==> Error in function outputs."

severity WARNING;
end process;

MONITORCOMPARATOR:
process(CONNECT, AEQUAL_B)

begin

assert (Compare(CONNECT, AEQUALB, AEQB))
report "==> Error in comparator output."

severity WARNING;

end process;

MONITORCARRYPROPOGATE:
process(CONNECT, NOTP)

begin

assert (Compare(CONNECT, NOT_P, NOTP))
report "==> Error in carry propagate output."

severity WARNING;

end process;

MONITORCARRY:

process(CONNECT, CN4)

begin

assert (Compare(CONNECT, CN4, CN_4))
report "==> Error in carry output."

severity WARNING;

Page 23

S... f

WAVES VHDL Interface

end process;

MONITORCARRYGENERATE:

process(CONNECT, NOTLG)

begin
assert (Compare(CONNECT, NOTG, NOTG))

report "==> Error in carry generate output."

severity WARNING;
end process;

end ALU;

Context Clauses

The "use IEEE.STDLogic_1164.all" clause in Listing 3 is required to provide

visibility to all of the types and functionality of the IEEE Standard 1164

packages.

The "use WORK.MM54HC181_WAVESDUT.all" clause is required to

provide visibility to the required, user defined WAVES type Testpins.

The "use WORK.WAVESObjects.all" is required to provide visibility to the

WAVES type WAVES-portlist.

The "use WORK.WAVESVHDLInterface.alr' clause is required to provide

visibility to all of the types and functionality of the WAVESVHDLInterface

package.

The "use WORK.WaveformGenerator.all" clause is required to provide

visibility to the WAVES waveform generator procedure "Waveform." This

procedure is used to supply the WAVES signals to the VHDL model one slice

at a time.

The "use WORK.MM54HC 181_CMOSPerformance_Characteristics. all"

clause is required to provide visibility to the types Volts, and Temperature

used in the generic clause of the "Testbench" entity declaration.

Page 24

WAVES VHDL Interface

Entity Declaration

The VHDL entity declaration "TestBench" declares two generics:

TESTVOLTAGE and TESTTEMPERATURE. These generics are used to

allow the test bench to alter the operating conditions under which the model

is exercised.

Architecture Body

The architecture body of the test bench first declares all of the signals

necessary to connect the WAVES dataset to the four bit ALU model. The next

declaration in the test bench is the four bit ALU component declaration. This

declaration describes the interface characteristics of the four bit ALU model

component that will be used by the test bench. Next, the configuration

declaration is used to instantiate the actual ALU component from the library

for this test bench. Here the component MM54HC181(BEHAVIORAL) is

selected. This is the behavioral model of the four bit ALU that is listed in

Appendix B.

The executable portion of the architecture body consists of eight processes.

The first process: WAVES, is a VHDL concurrent procedure call. This process

calls the procedure Waveform from the waves dataset and returns one slice of

the WAVES data through the WAVES port list signal CONNECT. The

execution timing, or firing, of this procedure is controlled by the WAVES

dataset. The external file, Listing C8 of Appendix C, indicates that one slice

is generated every 500 ns.

The second process, XTRACT, is used to extract the input signals from the

WAVES signal CONNECT. This process is sensitive on the WAVES port list

signal CONNECT. Whenever any event occurs in the CONNECT signal, this

process becomes active and calls the WAVES VHDL Interface functions

SimCodeOf and SimCodeVectorOf to provide values for the signals

APINS, BPINS, SPINS, CARRY, and MODE. These are the intermediate

signals used to connect the WAVES dataset to the four bit ALU model.

Page 25

WAVES VHDL Interface

The third process, ALU, provides the mappings from the test bench entity
declaration generics (TESTVOLTAGE and TESTTEMPERATURE) to the
values of the ALU component generics (VOLTAGE and

OPERATINGTEMPERATURE) as well as the port mappings from the
intermediate signals and the four bit ALU model. This is where the stimuli
and response signals are "wired" to the instantiated ALU component.

The following five processes monitor the outputs of the model during the
entire simulation. Each process is sensitive to the WAVES port list signal
CONNECT so that any event in the CONNECT signal will cause these
processes to become active. Each of the five monitor processes are also
sensitive on a different output signal of the model. The five processes

continuously monitor the model outputs: FUNCTIONOUTPUTS,

AEQUAL_B (comparator), NOTP (carry propagate), CN4 (Carry), and
NOTG (carry generate). This is necessary to verify that the model outputs
correspond to the values specified in the WAVES dataset for the entire

simulation.

The assert clauses of the monitor processes use the variant of the Compare
function that returns a Boolean value. This function compares the

appropriate signals in the CONNECT signal with the signals generated by
the model. The assert statement will report an error whenever these signals
are not equivalent. Two types of Compare function are demonstrated here:
one that selects a single signal from the CONNECT parameter (eg.

MONITORCARRY), and one that selects a vector of signals from the
CONNECT parameter (MONITORFUNCTIONOUTPUTS).

Conclusions

Although the WAVES VHDL Interface package provides solutions to many
concerns confronting the user of WAVES in a VHDL environment, some
concerns still exist. For example, the need to place the entire WAVES port
list signal CONNECT in the sensitivity list of each monitor process causes

Page 26

WAVES VHDL Interface

the process to become active whenever any event on any subsignal of
CONNECT occurs. This causes the monitor processes to "fire" many more
times than is necessary to verify the model outputs with which each
individual monitor process is concerned. This causes the simulation to
become inefficient, and, with large pin count devices could make simulation
time unreasonably (or impossibly) long. This problem can not be rectified by

placing a call to one of the WVI functions to select a subset of signals from
CONNECT since functions return values, not signals. Only signals may
appear in a process sensitivity list.

The WVI does, however, address all of the concerns outlined in this report.

The WVI provides an easy to use set of procedures and functions that hide the
details of the WAVES port list implementation from the VHDL modeler that
wants to use the WAVES standard to verify his models. Also, using this set

of recommended practices assures the portability of the testbenches across
multiple WAVES implementations since the WAVES port list

implementation details remain hidden from the test bench.

Finally, the concerns raised during comment ballot resolution regarding the

ability to deal with sets of pins, or busses, are addressed by the functions and
procedures that allow the selection of vectors of signals from the WAVES port
list. The use of pin names and pin set names as the signal selectors of these

functions and procedures allows the user to specify the signals of interest in a
manner that is convenient and familiar.

Page 27

Appendix A

ARpendix A: WM Package Body

Listing Al of this Appendix contains the body of the WAVESVHDLInterface
package. This source code is intended only to illustrate the semantics of the
functions and procedures listed in Listing 2. This code illustrates only one possible
implementation of these semantics based on the single existing implementation of
the WAVES standard packages. Further, this code has not been exhaustively tested
to assure that all of its functionality is correct and/or complete.

Listing Al: The WAVES VHDL Interface Package Body.

library WAVESSTD;

use WAVESSTD.WAVES_SYSTE M.all;
package body WAVESVHDLInterface is

-- Function to compute the number of elements in the given pin set.

function SizeOf(PINSET: Pinset) return Natural is

variable N : Natural := 0;

begin

for I in PINSET'range loop

if PINSET(I) then

N:=N+1;

end if;
end loop;

return N;

end SizeOf;

-- Function to create a Simcodevector with range n downto 0 from

Page Al

Appendix A

-- a Simcodevector with range 0 to n.

function Reverse_Vector(VECTOR: in Simcodevector)
return Sim codevector is

variable RVECTOR : Simcodevector(VECTOR'reverserange);

variable J • integer;

begin
J := VECTOR'length - 1;

for I in VECTOR'range loop

R_VECTOR(J) := VECTOR(I);

J :=J - 1;

end loop;
return RVECTOR;

end ReverseVector;

-- Function to create a Logicvector with range n downto 0 from

-- a Logic-vector with range 0 to n.

function ReverseVector(VECTOR: in Logic-vector)
return Logicvector is

variable RVECTOR : Logic-vector(VECTOR'reversearange);

variable J • integer;

begin

J := VECTOR'length - 1;
for I in VECTOR'range loop

R_VECTOR(J):= VECTOR(I);

J :=J - 1;

end loop;
return RVECTOR;

end ReverseVector;

Page A2

Appendix A

-- This function returns the Simcode that corresponds to the WAVES

-- Logic-value of the given pin in the waves port list.

function simcodeOf(signal WPL : WAVES_port_list;

PIN: Testpins)

return Simcode is

begin
return TRANSLATE(

Logic value'val(WPL.WPL(Test-pins'pos(PIN) + 1).LVALUE));

end simcodeOf;

-- This function returns a Simcodevector that corresponds - in length

-- and order - to the WAVES Logic values in the WAVES port list elements

-- that are members of the given pin set.

function simcodeVectorOf(signal WPL WAVES_portjlist;

rIN_SET : Pinset:= ALLPINS;

ASCENDING: Boolean := TRUE)

return Simcodevector is

constant LENGTH: Natural := SizeOf(PINSET);

variable VECTOR: Simcode-vector(0 to LENGTH - 1);

variable N : Natural := 0;

begin

for PIN in PINSET'range loop

if PINSET(PIN) then

VECTOR(N) := simcodeOf(WPL, PIN);

N:= N + 1;
end if;

end loop;

Page A3

Appendix A

if not ASCENDING then

return ReverseVector(VECTOR);

else
return VECTOR;

end if;

end simcodeVectorOf;

-- This function returns the WAVES Logic-value of the given pin in
-- the waves port list.

function LogicValueOf(signal WPL : WAVES-port_list;

PIN: Test__pins)
return Logicvalue is

begin
return Logic..value'val(WPL.WPL(Test-pins'pos(PIN) + 1).LVALUE);

end LogicValueOf;

-- This function returns a Logic-vector that corresponds - in length

-- and order - to WAVES logic values in the WAVES port list elements
-- that are members of the given pin set.

function LogicVectorOf(signal WPL WAVES-portjlist;

PINSET : Pinset:= ALLPINS;

ASCENDING : Boolean := TRUE)
return Logicvector is

constant LENGTH: Natural := SizeOf(PINSET);
variable VECTOR: Logic-vector(0 to LENGTH - 1);
variable N : Natural := 0;

begin

Page A4

Appendix A

for PIN in PIN_SET'range loop

if PINSET(PIN) then

VECTOR(N):= LogicValueOf(WPL, PIN);

N:= N + 1;
end if;

end loop;

if not ASCENDING then

return ReverseVector(VECTOR);

else

return VECTOR;

end if;

end LogicVectorOf;

-- This function compares a Sim-code to the corresponding element

-- (given by PIN) of the WAVES port list.

function Compare(signal WPL : WAVESportjlist;

CODE: Simrcode;
PIN : Test-pins)

retum Boolean is

begin

return ISEQUAL(CODE, Logic value'val(

WPL.WPL(Testjpins'pos(PIN) + 1).LVALUE));

end Compare;

-- This function compares the Simcodes in the Simcodevector to the

-- corresponding elements (given by PIN-SET) of the WAVES port list.

function Compare(signal WPL WAVESportjlist;

VECTOR : Simcodevector;

PINSET: Pinset:= ALL-PINS)

return Boolean is

Page A5

Appendix A

constant ASCENDING: Boolean:= VECTOR'left = VECTOR'low;

variable RESULT : Boolean := TRUE;

variable I natural:= VECTOR'left;

begin

for PIN in Pinset'range loop

if PINSET(PIN) then

RESULT:= RESULT and Compare(WPL, VECTOR(I), PIN);

if ASCENDING then

I:= +1;

else

I:= I-1;
end if;

end if;

end loop;

return RESULT;

end Compare;

-- This function compares a Simcode to an element (given by PIN) of

-- the WAVES port list and returns a WAVESmatchlist indicating the result.

function Compare(signal WPL : WAVE Sport-list;

CODE: Simcode;

PIN : Test-pins)

return WAVESmatchlist is

constant I "natural := Test-pins'pos(PIN) + 1;

variable RESULT : WAVESmatch_list;

begin

if WPL.WPL(I).MCONTROL = SAMPLESTART then

RESULT.MFLAGS(I) := TRUE;

elsif WPL.WPL(I).MCONTROL = SAMPLE then

if not

ISEQUAL(CODE, Logic-value'val(WPL.WPL(I).LVALUE)) then

Page A6

Appendix A

RESULT.MFLAGS(I) := FALSE;

end if;

end if;

if WPL.DELAYLOGIC >= 0 then

RESULT.DFLAG := ISEQUAL(CODE,

Logicyvalue'val(WPL.DELAYLOGIC));

end if;

return RESULT;

end Compare;

-- This function compares each Simcode in the Simcodevector to the

-- corresponding elements (given by PIN-SET) of the given WAVES port

-- list and returns a WAVESmatchlist indicating the results.

function Compare(signal WPL • WAVESport_list;

VECTOR : Simcodevector;

PINSET: Pinset := ALL-PINS)

return WAVESmatchlist is

constant ASCENDING: Boolean := VECTOR'left = VECTOR'low;
variable RESULT : WAVESmatchlist;
variable I • natural := VECTOR'left;

begin

for PIN in Pinset'range loop

if PINSET(PIN) then

RESULT := Compare(WPL, VECTOR(I), PIN);

if ASCENDING then

I:= +1;

else

I:= I-1;
end if;

end if;

end loop;

Page A7

Appendix A

return RESULT;

end Compare;

-- This procedure assigns the element (given by PIN) of the WAVES

-- match list to the values specified in the WAVES_matchlist that are

-- given by PIN.

procedure MatchAssign(signal WML : inout WAVESmatch_list;

VALUE: in WAVESmatch_list;
PIN :in TestPins) is

variable I : natural := Test-pins'pos(PIN) + 1;

begin
WML.MFLAGS(I) <= VALUE.MFLAGS(I);
WML.DFLAG <= VALUE.DFLAG;

end Match_Assign;

-- This procedure assigns all of the elements (given by PINSET) of

-- the WAVES match list to the values specified in the WAVESmatchlist
-- that are members of PINSET.

procedure MatchAssign(signal WML • inout WAVESmatchjlist;

VALUE : in WAVESmatch_list;
PINSET: in Pinset := ALL-PINS) is

begin
for PIN in Pinset'range loop

if PINSET(PIN) then
MatchAssign(WML, VALUE, PIN);

end if;
end loop;

end Match-Assign;

Page A8

Appendix A

-- This procedure compares a Simcode to an element (given by PIN) of

-- the WAVES port list and assigns the corresponding element of the

-- WAVES match list to the result.

procedure Compare(signal WPL : inout WAVES-portist;

signal WML : inout WAVES-matchlist;

CODE: in Simscode;

PIN :in Testpins)is

begin

MatchAssign(WML, Compare(WPL, CODE, PIN), PIN);

end Compare;

-- This procedure compares each Simcode in the Simvector to the

-- elements (given by PINSET) of the WAVES port list and assigns

-- the corresponding elements of the WAVES match list to the results.

procedure Compare(signal WPL • inout WAVES-portjlist;

signal WML : inout WAVES_match_list;

VECTOR :in Simcodevector;

PINSET: in Pinset := ALLPINS) is

begin

MatchAssign(WML, CompareW WPL, VECTOR, PINSET), PINSET);

end Compare;

-- This procedure returns the tag string associated with the given

-- pin from the WAVES port list.

procedure GetTag(signal WPL : inout WAVESportList;

TAG: out String;

PIN : in TestLpins) is

Page A9

Appendix A

constant INDEX • natural := Testpins'pos(PIN) + 1;

begin
wait until WPL.TAGFLAG;
if WPL.WPL(INDEX).TAGFLAG then

if TAG'Iength < WPL.TAGLEN then
TAG(1 to TAG'Iength) WPL.TAG_STR(1 to TAG'length);

else

TAG(1 to WPL.TAGLEN) WPL.TAGSTR(1 to WPL.TAGLEN),

end if;
end if;

end GetTag;

-- This procedure returns the tag string associated with the given

-- pin set from the WAVES port list.

procedure GetTag(signal WPL • inout WAVES_port_List;

TAG : out String;
PINSET: in Pinset:= ALLPINS) is

variable ISTAGGED : Boolean := TRUE;

begin
wait until WPL.TAGFLAG;

for PIN in PINSET'range loop
if PINSET(PIN) /= WPL.WPL(Test-pins'pos(PIN) + 1).TAGFLAG

then
ISTAGGED := FALSE;

exit;

end if;

end loop;
if ISTAGGED then

if TAG'length < WPL.TAGLEN then

TAG(1 to TAG'length) := WPL.TAGSTR(1 to TAG'length);

Page A1O

Appendix A

else
TAG(1 to WPL.TAGLEN) := WPL.TAGSTR(1 to WPL.TAGLEN);

end if;
end if;

end GetTag;

-- This procedure returns the tag string associated with the current

-- WAVES port list.

procedure GetTag(signal WPL: inout WAVESport_List;

TAG: out String) is

begin

wait until WPL.TAG_FLAG;
if TAG'length < WPL.TAGLEN then

TAG(1 to TAG'length) := WPL.TAGSTR(1 to TAG'Iength);

else
TAG(1 to WPL.TAGLEN) WPL.TAGSTR(1 to WPL.TAGLEN);

end if;

end GetTag;

end WAVES_VHDLInterface;

Page All

Appendix B

Appendix B: Four Bit ALU VHDL Model

The following VHDL model of the four bit ALU is taken from the National
Semiconductor databook (3]. This model is presented in three listings, the entity
declaration, the architecture body, and the support package that defines types and
functions that define the CMOS performance characteristics for various operating

conditions.

Each Listing represents a separate source file. Listing BI lists the source code for
the VHDL entity declaration. This entity is defined with two generics, VOLTAGE
and OPERATINGTEMPERATURE. The values of these generics are used to select
the appropriate timing delays from the performance characteristics table listed in

Listing B3.

Listing BI: Entity Declaration

-- This design unit defines the signal interface for the 181 ALU. This
-- device interface provides two simulation generics: Voltage and
-- Temperature.

use WORK.STDLOGIC_1 164.a11;
use WORK.MM54HC181_CMOSPERFORMANCE_CHARACTERISTICS.alI;

entity mm54hc181 is

generic(VOLTAGE : Volts := MID;

OPERATINGTEMPERATURE : Temperature := TYPICAL);
port(A-INPUTS, BINPUTS, SELECTLINES: in Std.ulogic-vector;

CN, M in Stdulogic;
F_OUTPUTS : out Stdulogic-vector;

AEQB, CN_4, NOTG, NOTP : out Std-ulogic);
end mm54hcl81;

Page B1

Appendix B

Listing B2 lists the VHDL architecture body for the behavioral model of the four bit
ALU. The logic equations for this model are derived from the logic diagram of the
National Semiconductor MM54HC181/MM74HC181 Arithmetic Logic
Unit/Function Generator description. The GetMode function is derived from Table
1 of the general description section of the National Semiconductor
MM54HC181/MM74HC181 Arithmetic Logic Unit/Function Generator description.

Listing B2: Architecture Body.

-- This design unit defines a behavioral model for the 181 ALU.

use WORK. MM54HC 181_CMOSPERFORMANCECHARACTERISTICS.alI;

architecture behavioral of mm54hc181 is

-- This function determines the chip mode based on the Mode
-- bit and the select bits. Valid modes are SUM, DIF, and LOGIC.

function GetMode(M, SO, S1, S2, S3: in Stdculogic) return Mode is

begin

if M ='1'then

retum LOGIC;
elsif (S3 = '0'and S2 = '0' and S1 = '1' and SO= '1') or

(S3 = '0' and S2 = '1' and S1 = '1' and So = '0') or

(S3 = '0' and S2 = '1' and S1 = '1' and SO = '1') or
(S3= '1' and S2= '0' and S1 ='1V and SO= 'l') or
(S3='1' and S2=1' and S1 =1' and SO ='1') then

return DIF;
else

Page B2

Appendix B

return SUM;

end if;

end GetMode;

-- Declare internal signals.

signal NO, N1, N2, N3, N4, N5, N6, N7, N8, N9,
N10, Nll, N12, N13, N14, N15, N16, N17: Std_ulogic;

signal CHIPMODE: Mode;

begin

CHIPMODE <= GetMode(M, SELECTLINES(0), SELECTLINES(1),

SELECTLINES(2), SELECTLINES(3));

-- Assign input nodes.

NO <= (AINPUTS(3) and BINPUTS(3) and SELECTLINES(3)) nor

(A-INPUTS(3) and not BINPUTS(3) and SELECTLINES(2));
N1 <= not((not BINPUTS(3) and SELECTLINES(1)) or

(BjNPUTS(3) and SELECTLINES(0)) or (AINPUTS(3)));
N2 <= (AINPUTS(2) and BINPUTS(2) and SELECTLINES(3)) nor

(AJINPUTS(2) and not BINPUTS(2) and SELECTLINES(2));
N3 <= not((not BINPUTS(2) and SELECTLINES(1)) or

(BJINPUTS(2) and SELECTLINES(0)) or (AINPUTS(2)));
N4 <= (AINPUTS(1) and BINPUTS(1) and SELECTLINES(3)) nor

(AJINPUTS(1) and not BINPUTS(1) and SELECTLINES(2));
N5 <= not((not BINPUTS(1) and SELECTLINES(1)) or

(BINPUTS(1) and SELECTLINES(0)) or (AINPUTS(1)));
N6 <= (AINPUTS(0) and BINPUTS(0) and SELECTLINES(3)) nor

(AJINPUTS(0) and not BINPUTS(0) and SELECTLINES(2));
N7 <= not((not BINPUTS(0) and SELECTLINES(1)) or

(BINPUTS(0) and SELECTLINES(0)) or (AJINPUTS(0)));

Page B3

Appendix B

-- Assign internal nodes.

N8 <= not(NO and N2 and N4 and N6 and CN);
N9 <= NO xor NI;
NIO <= not((N2 and N4 and N6 and CN and not M) or

(N2 and N4 and N7 and not M) or
(N2 and N5 and not M) or

(N3 and not M));
N11 <= N2 xor N3;

N12 <= not((N4 and N6 and CN and not M) or
(N4 and N7 and not M) or

(N5 and not M));

N13 <= N4 xor N5;
N14 <= (N6 and CN and not M) nor (N7 and not M

N 15 <=. N6 xor N7;

N16 <= not(CN and not M);

-- Assign output signals.

N17 <= not(N1 or (NO and N3) or (NO and N2 and N5) or
(NO and N2 and N4 and N7));

NOTG <= N17 after DELAYTABLE(CHIP_MODE, NOTG, VOLTAGE,

OPERATING_TEMPERATURE);

CN_4 <= not N17 or not N8 after

DELAYTABLE(CHIP_MODE, CN_4, VOLTAGE,

OPERATINGTEMPERATURE);

NOTP <= not(NO and N2 and N4 and N6) after
DELAYTABLE(CHIP_MODE, NOTP, VOLTAGE,

OPERATINGTEMPERATURE);

F_OUTPUTS(0) <= N 15 xor N 16 after

DELAYTABLE(CHIPMODE, NOTF, VOLTAGE,

OPERATINGTEMPERATURE);

Page B4

Appendix B

F_OUTPUTS(I) <= N13 xor N14 after

DELAYTABLE(CHIPMODE, NOTF, VOLTAGE,

OPERATINGTEMPERATURE);

F_OUTPUTS(2) <= N11 xor N12 after

DELAYTABLE(CHIPMODE, NOTF, VOLTAGE,

OPERATINGTEMPERATURE);

F_OUTPUTS(3) <= N9 xor N10 after

DELAYTABLE(CHIPMODE, NOTF, VOLTAGE,

OPERATINGTEMPERATURE);

AEQB <= (N9 xor N10) and (N1l1 xor N12) and

(N13 xor N14) and (N15 xor N16) after

DELAYTABLE(UHIPMODE, AEQB, VOLTAGE,

OPERATINGTEMPERATURE);

end behavioral;

Listing B3 lists the VHDL support package

MM54HC181_CMOSPERFORMANCECHARACTERISTICS. This package
declares types for Volts, Temperature, Mode, and Signalname, and defines a look-

up table that defines the CMOS timing characteristics for the four bit ALU. The

data contained in this table is taken from the AC Electrical Characteristics table
from National Semiconductor MM54HC181/MM74HC181 Arithmetic Logic

Unit/Function Generator description[41.

Page B5

Appendix B

Listing B3: Supporting Package.

-- Package: MM54HC181_CMOSPERFORMANCECHARACTERISTICS

-- Description:

-- This package exports types and constants required to represent the

-- performance characteristics for the CMOS 181 ALU. The data in this
-- package is from the National Semiconductor MM54HC181 ALU specification.

package mm54hcl8lcmosperformancecharacteristics is

type Volts is (LOW, MID, HIGH);
-- 2.0,4.5, 6.0

type Temperature is (TYPICAL, GLOW, GMID, GHIGH);
-- 25C, 25C, 85C, 125C

type Mode is (SUM, DIF, LOGIC);

type SignalName is (AEQB, CN_4, NOTF, NOTG, NOTP);

type Delay-matrix is array(
Mode'left to Mode'right,

Signalname'left to Signal-name'right,

Volts'left to Volts'right,

Temperature'left to Temperature'right) of Time;

constant DELAYTABLE : Delay-matrix

(--SUM
(--AEQB

((0 ns, 0 ns, 0 ns, 0 ns),
Page B6

Appendix B

(0 ns, 0 ns, 0 ns, 0 ns),

(0 ns, 0 ns, 0 ns, 0 ns)),
-- CN_4

110 ns, 250 ns, 325 ns, 375 ns),

(35 ns, 50 ns, 63 ns, 75 ns),

30 ns, 43 ns, 53 ns, 65 ns)
-- NOTF

((115 ns, 240 ns, 300 ns, 360 ns),

(35 ns, 48 ns, 60 ns, 72 ns),

(30 ns, 41 ns, 51 ns, 61 ns)),

-- NOTG

((55 ns, 120 ns, 160 ns, 200 ns),
(17 ns, 24 ns, 30 ns, 36 ns),

14 ns, 20 ns, 25 ns, 30 ns)),
-- NOTP

((70 ns, 150 ns, 189 ns, 224 ns),

(20 ns, 30 ns, 38 ns, 45 ns),

17 ns, 26 ns, 32 ns, 38 ns)

-- DIF

(--AEQB
((120 ns, 280 ns, 350 ns, 420 ns),

40 ns, 56 ns, 70 ns, 84 ns

(35 ns, 48 ns, 60 ns, 72 ns)
-- CN_4
((120 ns, 280 ns, 350 ns, 420 ns),

40 ns, 56 ns, 70 ns, 84 ns

(35 ns, 48 ns, 60 ns, 72 ns)),
-- NOTF

((120 ns, 275 ns, 344 ns, 344 ns),
(40 ns, 55 ns, 69 ns, 83 ns),
(34 ns, 47 ns, 59 ns, 69 ns)

-- NOTG

((70 ns, 150 ns, 189 ns, 224 ns),
20 ns, 30 ns, 38 ns, 45 ns

(17 ns, 26 ns, 32 ns, 38 ns)),

Page B7

Appendix B

-- NOTP

(70Ons, 150 ns, 189 ns, 224 ns),
(20 ns, 30 ns, 38 ns, 45 ns),
(17 ns, 26 ns, 32 ns, 38 ns)))

-LOGIC

(-AEQB
((0 ns, 0 ns, 0 ns, 0 ns),
(0 ns, 0 ns, 0 ns, 0 ns),
(0 ns, 0 ns, 0 ns, 0 ns))

C--N4
(0 ns, 0 ns, 0 ns, 0 ns),
(0 ns, 0 ns, 0 ns, 0 ns),
(0 ns, 0 ns, 0 ns, 0 ns)),

-- NOTE

(120 ns, 275 ns, 344 ns, 344 ns),
(40 ns, 55 ns, 60 ns, 83 ns)
(34 ns, 47 ns, 59 ns, 69 ns))

-- NOTG

((0 ns, 0 ns, 0 ns, 0 ns),
(0 ns, 0 ns, 0 ns, 0 ns),
(0 ns, 0 ns, 0 ns, 0 ns)),

-- NOTP

((0 ns, 0 ns, 0 ns, 0 ns),
(0 ns, 0 ns, 0 ns, 0 ns),
(0 ns, 0 ns, 0 ns, 0 ns))))

end mm54hcl 81_cmos-performance-characteristics;

Page B8

Appendix C

ARpendix C: The WAVES Dataset

This Appendix lists all of the WAVES source code that describes the test vectors for

the MM54HC181 four bit ALU. These vectors are taken from MIL-M-38510/11C 19

May 1978 Table III[41. Each Listing in this Appendix represents a separate source
file. Listing C1 lists the WAVES header file. This file serves to identify the

WAVES dataset and specify its construction.

Listing Cl: The WAVES Header File.

-- This is the header file for the WAVES dataset used to provide the

-- stimulus/response data for simulating the 181 ALU.

-- Dataset identification information.

TITLE 181 ALU Vector Generator

DEVICEID 181 ALU

DATE 21-AUG-1992

ORIGIN MIL-M-38510/11 C 19 May 1978 Table III
AUTHOR Rome Laboratory ERDD

AUTHOR James P. Hanna

DATE 06-DEC-1 993

ORIGIN Removal of cyclic elaboration problem
AUTHOR Rome Laboratory ERDD

AUTHOR James P. Hanna

OTHER Rearranged code to remove cyclic references.

-- Dataset construction information.

WAVESFILENAME mm54hcl8l_wavesilogic_.vhd WORK

Page C1

Appendix C

WAVESFILENAME mm54hc181_waveslogic.vhd WORK
WAVESFILENAME mm54hc181_wavescodes_.vhd WORK
WAVESFILENAME mm54hcl81_wavesdut_.vhd WORK
WAVESUNIT WAVESINTERFACE WORK
WAVESUNIT WAVESOBJECTS WORK
WAVESFILENAME mm54hcl81_waveform-generator_.vhd WORK
WAVESFILENAME mm54hcl 81 _waveform-generator.vhd WORK

EXTERNALFILENAME mm54hc181_waves-patterns.txt VECTORS

WAVEFORMGENERATORPROCEDURE

WORK.WAVEFORMGENERATOR.WAVEFORM

Listing C2 lists the code that declares the required, WAVES user defined type
Test-pins. This type enumerates the names of all of the functional pins of the device

interface.

Listing C2: The TestPins Declaration.

package MM54HC181_WAVESDUT is

type Test-pins is (S3, S2, S1, SO, CN, M,

NOTFO, NOTF1, NOTF2, NOTF3, AEQB, NOTP, CN_4,
NOTG, B3, A3, B2, A2, B1, Al, BO, AO);

end MM54HC181_WAVESDUT;

Listing C3 lists the code that declares the required, WAVES user defined constant
PINCODES. This constant defines the codes that will be used in the external file to

identify which frame to apply to each pin in Test-pins for each vector.

Page C2

Appendix C

Listing C3: The PinCodes Declaration.

package MM54HC181_WAVESCodes is

constant PINCODES: String:= "UXBALH";

end MM54HC181_WAVESCodes;

Listing C4 lists the code that declares the required, WAVES user defined type

Logic-value. This type defines names for each type of event that can occur or the

waveform. This package also declares the required, user defined function

ValueDictionary.

Listing C4: The Logic-value Declaration.

library WAVESSTD;

use WAVESSTD.WAVESSTANDARD.all;

package MM54HC181_WAVESLogic is

type Logic -value is

(LVUNKNOWN, DONTCARE,

DRIVE_0, DRIVE_1,

SENSE_0, SENSE-l);

function ValueDictionary(VALUE: in Logic-value)

return Eventvalue;

end MM54HC181_WAVESLogic;

Page C3

Appendix C

Listing C5 lists the code that defines the required, WAVES user defined function

Value_Dictionary. This function defines the semantics of each of the logic values

that are declared in Listing C4.

Listing C5: The ValueDictionary Declaration.

ý)ackage body MM54HC181_WAVESLogic is

function ValueDictionary(VALUE : in Logic-value)

return Eventvalue is

begin

case VALUE is

when LVUNKNOWN =>
return state = UNKNOWN and

strength = UNKNOWN and

direction = UNKNOWN and
relevance = UNKNOWN;

when DONTCARE =>
return UNSPECIFIED;

when DRIVE_0 =>

return state = LOW and
strength = DRIVE and

direction = STIMULUS;

when DRIVE_1 =>
return state = HIGH and

strength = DRIVE and
direction = STIMULUS;

when SENSE_0 =>

return state = LOW and

direction = RESPONSE and

relevance = REQUIRED;

when SENSE_1 =>
return state = HIGH and

Page C4

Appendix C

direction = RESPONSE and
relevance = REQUIRED;

end case;

end ValueDictionary;

end MM54HC181_WAVESLogic;

Listing C6 lists the package specification in which the required waveform generator
procedure is declared. This procedure provides the interface to the WAVES port list.
Additionally, this package defines all of the pin sets of interest.

Listing C6: The WaveformGenerator Package Specification.

use WORK.MM54HC181_WAVESLogic.all;
use WORK. MM54HC 181 _WAVESCodes.all;
use WORK.MM54HC181_WAVESDUT.all;

use WORK.WAVESINTERFACE.all;
use WORK.WAVESOBJECTS.all;

package WaveformGenerator is

procedure Waveform(signal CONNECT: inout WAVESport-list);

constant APINS Pinset := NewPinset((AO, Al, A2, A3));

constant BPINS: Pinset := NewPinset((BO, B1, B2, B3));

constant SPINS: Pinset:= NewPinset((SO, S1, S2, S3));

constant FPINS: Pinset := NewPinset((NOTFO, NOTFI, NOTF2, NOTF3));

end WaveformGenerator;

Page C5

Appendix C

Listing C7 lists the package body in which the waveform generator procedure and

frame set function implementation are defined. The frame set function defines the
mapping between the pin codes declared in Listing C3 and (sets) of logic values
(events) and the time of their occurrence within a given slice. The waveform
generator procedure reads the external file and the Apply procedure constructs the

waveform one slice at a time until the entire external file has been read. The

sequence of events that are scheduled on each pin of the CONNECT parameter are
defined by the mappings described in the frame set function.

Listing C7: The WaveformGenerator Package Body.

use STD.TEXTIO.alI;

package body WaveformGenerator is

function MM54HC181_FrameSet(STRBSTART, STRBSTOP: Time)

return FrameSet is

begin

return
New-FrameSet('U', FrameEvent((LVUNKNOWN, Etime(0 ns)))) +
NewFrameSet('X', FrameEvent((DONTCARE, Etime(0 ns)))) +

NewFrameSet('B', FrameEvent((DRIVEO, Etime(0 ns)))) +
NewFrameSet('A', FrameEvent((DRIVEl, Etime(0 ns))) +

NewFrameSet('L', FrameElist(((DONTCARE, Etime(0 ns)),

(SENSE_0, Etime(STRBSTART)),
(DONTCARE, Etime(STRBSTOP))))) +

NewFrameSet('H', FrameElist(((DONTCARE, Etime(0 ns)),

(SENSEJl, Etime(STRBSTART)),
(DONTCARE, Etime(STRBSTOP)))));

end MM54HC181_FrameSet;

procedure Waveform(signal CONNECT :inout WAVES-portjlist) is

Page C6

Appendix C

file PATTERNS: TEXT is in "VECTORS";

variable VECTOR: Fileslice := NewFileSlice;

constant STRBSTART: Time:= 250 ns;

constant STRBSTOP : Time := 300 ns;

constant MM54HC181_FRAMESETARRAY: Frameset-array:=

NewFrameSetArray(

MM54HC181_FrameSet(STRBSTART, STRBSTOP), ALLPINS);

variable TIMINGDATA : Timedata:=

NewTimeData(MM54HC181 FRAMESETARRAY);

begin

loop

ReadFileSlice(PATTERNS, VECTOR);

exit when VECTOR.ENDOFFILE;
Apply(CONNECT, VECTOR.CODES.all,

Delay(VECTOR.FSTIME), TIMINGDATA);

end loop;

end Waveform;
end WaveformGenerator;

Listing C8 lists the WAVES external file. This file contains the sequences of pin

codes that comprise the vector set to be read and applied by the WAVES waveform

generator procedure. Each vector, including the timing information, represents one

slice of the waveform. The timing information at the end of each pattern indicates

the duration of each slice.

Page C7

Appendix C

Listing C8: The WAVES External File.

% External File: MM54HC1 81_WAVESPATTERNS.TXT

BBBBBBHLLLLLHLBBBBBBBB: 500 ns;
BABAAAHHHHHLHLBBBBBBBB : 500 ns;
AABBAAHHHHHHLHBABBBBBB : 500 ns;

ABBABBHLLLLHLHABABBAAA: 500 ns;
BABABBHHLLLHLHABBABBBA: 500 ns;
AAAABBLLLLLLLHABABABBB: 500 ns;
AABAABHHLLLLHLBBBBABAB : 500 ns;
ABBBAAHHHLLLHLBABBBBBB: 500 ns;
AABBABLLHHLHHLBBBABABB : 500 ns;
AAABBBHHHHHHHLBBABBABA : 500 ns;
BABBAAHHHLLLHLAABBBBBB : 500 ns;
ABBABBHHLHLLHLABBBABBB: 500 ns;
AABAABLLHLLHHLBBBBABBA: 500 ns;
AABBABLLHLLHHLABBBBABB : 500 ns;
BABABBHHHHHHHLABABBBBA: 500 ns;
BABAABLHHHLLHLAAAAAABB: 500 ns;
MABAABLLLHLHHLBBABABBA: 500 ns;
BAABBBHHHHHHHLBBBBABBA: 500 ns;
AAAABBHLLLLHLHABABBBBA : 500 ns;
BABBABLLLHLHHLBBBABBBB : 500 ns;
AABAABLLLHLHHLBBABAABB : 500 ns;
ABBAABLLHHLLHLABBABBBB : 500 ns;
AAAAABLLLLLHLHABABABBA: 500 ns;
ABBAABHHHHHLHHABABABAB : 500 ns;
AABAABLLLLLHLHABAABBBB : 500 ns;
BABBABHHHHHLHHAAAAAAAA: 500 ns;
ABBBAAHHHHHHLHAABBBBBB: 500 ns;
BBBAABHHHHHLHHABABABBA : 500 ns;
ABBBBAHHHHHHLHAAAABBAB: 500 ns;
ABAAMALHLHLHLHAAABAABA: 500 ns;

Page 08

Appendix C

AAABBAHLLHLHHLABBBBBBA: 500 ns;
AAABABLLLLLHLHBBBBAAAB: 500 ns;
BBBBBBHHHLLLHLBBBABABB: 500 ns;
AAAABAHLHHLHLHBABABBBA: 500 ns;

Page 09

References & Bibliography

[1] "IEEE Standard for Waveform and Vector Exchange (WAVES)," Institute of

Electrical and Electronics Engineers, IEEE Std 1029.1-1991.

[2] "IEEE Standard VHDL Language Reference Manual, "Institute of Electrical and

Electronics Engineers, IEEE Std 1076-1987.

[3] "MM54HC/74HC High Speed microCMOS Logic Family Databook," National

Semiconductor Corporation, 1883.

[4] "Military Specification, Microcircuits, Digital, TTL Arithmetic Logic

Units/Function Generators, Monolithic Silicon," MIL-M-38510/11C, 19 May 1978.

Bibliography

Robert G. Hillman, "WAVES: A Simulation and Tester View," Proc. IEEE

International Test Conference, 1985.

"Prototype WAVES Standard VHDL Packages," provided to the WAVES Analysis

and Standardization Group, of the IEEE Standards Coordinating Committee 20 and

the IEEE Design Automation Standards Subcommittee, version 3.4.1 1 June 1991.

MJJ. GOVERNMENT PRINTING OFFICE: 1994-510-117-50004

Page R1

MISSION

OF

ROME LABORA TORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

